SHORT COMMUNICATIONS

Epoxidation of Stereoisomeric Benzoylureas of Norbornene Series

E. A. Golodaeva ${ }^{1}$, A. O. Kas'yan ${ }^{2}$, V. A. Bakumov ${ }^{1}$, and L. I. Kas'yan ${ }^{1}$
${ }^{1}$ Dnepropetrovsk National University, Dnepropetrovsk, 49005 Ukraine
${ }^{2}$ Institut der Organischen Chemie, Rhein-Westphalische Techische Universität, Aahen, DBR

Received December 4, 2002

This work continues the studies on the synthesis of new derivatives of exo- and endo-5-aminomethyr bicyclo[2.2.1]hept-2-enes (Ia, b), in particular, of ureas from norbornene series. It was shown previously that the direction of transformations of this group compounds under treatment with peracids depended on the orientation of substituents attached to the cage fragment: The reactions either afforded epoxides or heterocyclization products, substituted azatricyclo [4.2.1.0 $\left.0^{3,7}\right]$-nonanes (azabrendanes) [1, 2].

The subject of this report is the synthesis and epoxidation of stereoisomeric benzoylureas IIa, b. Among the acylated ureas of various origin were found vitamins and drugs (barbital, biotin, caffeine, riboflavin etc.) [3]. Ureides including bicyclic carbon skebtons are poorly undersood although among them were found compounds possessing anticonvulsant and anal-
gesic properties stronger that the respective qualities of related amides [4].

Steroisomeric amines (Ia exo, Ib endo) were prepared by a known procedure of reducing individual exo- and endo-5-cyanobicyclo[2.2.1]hept-2-enes with lithium aluminum hydride [5]. Benzoylureas IIa, b were synthesized by reaction of the amines with benzoyl isocyanate. Epoxidation of compounds IIa, \mathbf{b} was carried out with monoperphthalic acid in statu nascendi obtained from phthalic anhydride and water solution of hydrogen peroxide.

It was established that oxidation of exo-isomer IIa gave rise to epoxide III, and from endo-isomer IIb arose substituted azabrendane IV. Epoxide III and azabrendane IV were also obtained by treating with benzoyl isocyanate epoxyamine \mathbf{V} [6] and tricyclic amine VI described in [7].

IV
$\mathrm{NHC}(\mathrm{O}) \mathrm{Ph}$

V

The structure and homogeneity of compounds II-IV were confirmed by IR and ${ }^{1} \mathrm{H}$ NMR spectra. In the IR spectrum of compound III was observed a strong band in the region $858 \mathrm{~cm}^{-1}[v(\mathrm{CO})$ in the epoxynorbornane fragment]. In the ${ }^{1} \mathrm{H}$ NMR spectrum

VI

VII
the proton signals of this fragment appeared at 2.92 and 2.91 ppm for H^{2} and H^{3} respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum of azabrendane IV were present characteristic signals: a doublet and a singlet belonging respectively to protons H^{3} and H^{2} at 3.11 and 3.39 ppm . In contrast to
compound VII, epoxidation product of (N-tosyl)-carbamoyl-endo-5-aminomethylbicyclo[2.2.1]hept-2ene [2], in whose ${ }^{1} \mathrm{H}$ NMR spectrum appeared two sets of signals with close values of chemical shift corresponding to two kinds of molecules, in the spectrum of compound IV was observed a single set of signals consistent with the assigned structure.

Amines Ia, b were prepared as described in [5], amines \mathbf{V} and VI as described in [6, 7]. The characteristics of amines were consistent with the published data.

Benzoylureas (IIa, b, III, IV). To a solution of $0.22 \mathrm{~g}(0.0015 \mathrm{~mol})$ of benzoyl isocyanate in 5 ml of benzene was added 0.0015 mol of an appropriate amine in 5 ml of benzene. The reaction completion was monitored by TLC. The separated precipitate was filtered off, washed with benzene, dried, and purified by crystallization from aqueous ethanol.
exo-5-(Benzoylureidomethyl)bicyclo[2.2.1]-hept-2ene (IIa), yield $85 \%, \mathrm{mp} 135-136^{\circ} \mathrm{C} . R_{f}$ (ether) 0.81 . IR spectrum, $\mathrm{cm}^{-1}: 3340,3164,3058,1718,1668$, 1537, 1280, 730. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 6.11 d.d $\left(\mathrm{H}^{2}\right), \quad 6.05$ d.d $\left(\mathrm{H}^{3}\right), 3.38$ d.d $\left(\mathrm{H}^{8 A}\right), 3.24$ d.d $\left(\mathrm{H}^{8 B}\right)$, $2.85 \mathrm{~m}\left(\mathrm{H}^{1}\right), 2.70 \mathrm{~m}\left(\mathrm{H}^{4}\right), 1.66 \mathrm{~m}\left(\mathrm{H}^{5}\right), 1.43 \mathrm{~d}\left(\mathrm{H}^{7 a}\right)$, $1.35 \mathrm{~d}\left(\mathrm{H}^{7 s}\right), 1.30$ d.d.d $\left(\mathrm{H}^{6 x}\right), 1.24$ d.t $\left(\mathrm{H}^{6 n}\right), 10.51 \mathrm{~s}$, 8.86 t (NH), 8.01 d, 7.54 d.d, 7.44 d (H arom). Found, $\%: \mathrm{N} 10.31 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: N 10.37.
endo-5-(Benzoylureidome thyl)bicyclo[2.2.1]-hept-2-ene (IIb), yield $82 \%, \mathrm{mp} 121-123^{\circ} \mathrm{C}$. R_{f} (ether) 0.85. IR spectrum, $\mathrm{cm}^{-1}: 3375,3051,1700$, 1665, 1570, 1522, 1264, 1240, 735. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 6.18 d.d $\left(\mathrm{H}^{2}\right), 6.03$ d.d $\left(\mathrm{H}^{3}\right), 3.08$ d.d $\left(\mathrm{H}^{8 A}\right), 2.90 \mathrm{~m}\left(\mathrm{H}^{l}\right), 2.88$ d.d $\left(\mathrm{H}^{8 B}\right), 2.84 \mathrm{~m}\left(\mathrm{H}^{4}\right), 2.34$ $\mathrm{m}\left(\mathrm{H}^{5}\right), 1.90$ d.d.d $\left(\mathrm{H}^{6 x}\right), 1.44 \mathrm{~d}\left(\mathrm{H}^{7 s}\right), 1.29 \mathrm{~d}\left(\mathrm{H}^{7 a}\right), 0.62$ d.t $\left(\mathrm{H}^{6 n}\right), 10.48 \mathrm{~s}, 8.76 \mathrm{t}(\mathrm{NH}), 8.01 \mathrm{~d}, 7.54$ d.d, 7.44 d (H arom). Found, \%: N 10.41. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: N 10.37. exo-5-(Benzoylureidomethyl)-exo-2,3epoxybicyclo[2.2.1]heptane (III), yield 87\%, mp 126 C. R_{f} (ether) 0.78. IR spectrum, $\mathrm{cm}^{-1}: 3320,3250,3042$, 1686, 1664, 1550, 1272, 1232, 858. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.19 d.d $\left(\mathrm{H}^{8 A}\right), 3.17$ d.d $\left(\mathrm{H}^{8 B}\right), 2.92 \mathrm{~d}\left(\mathrm{H}^{2}\right), 2.91$ $\mathrm{d}\left(\mathrm{H}^{3}\right), 2.43 \mathrm{~m}\left(\mathrm{H}^{1}\right), 2.37 \mathrm{~m}\left(\mathrm{H}^{4}\right), 1.81 \mathrm{~m}\left(\mathrm{H}^{5}\right), 1.52$ d.d.d $\left(\mathrm{H}^{6 x}\right), 1.19 \mathrm{~d}\left(\mathrm{H}^{7 s}\right), 1.17$ d.t $\left(\mathrm{H}^{6 n}\right), 0.92 \mathrm{~d}\left(\mathrm{H}^{7 a}\right)$, $10.53 \mathrm{~s}, 8.82 \mathrm{t}(\mathrm{NH}), 8.01 \mathrm{~d}, 7.54 \mathrm{~d} . \mathrm{d}, 7.44 \mathrm{~d}$ (H arom). Found, \%: N 9.71. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calcd., \%: N 9.79.

4-(Benzoylcarbamoyl)-exo-2-hydroxy-4-azatricyclo[4.2.1.0 ${ }^{3,7}$]nonane (IV), yield 84%, mp $122^{\circ} \mathrm{C}$ (decomp.). R_{f} (ether) 0.77. IR spectrum, $\mathrm{cm}^{-1}: 3323$, 3067, 1682, 1674, 1548, 1276, 1244, 1176, 1080. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.39 d.d $\left(\mathrm{H}^{5 A}\right), 3.36 \mathrm{~s}\left(\mathrm{H}^{2}\right)$,
$3.18 \mathrm{~d}\left(\mathrm{H}^{5 B}\right), 3.11 \mathrm{~d}\left(\mathrm{H}^{3}\right), 2.45 \mathrm{~m}\left(\mathrm{H}^{7}\right), 2.26 \mathrm{~m}\left(\mathrm{H}^{6}\right)$, $2.12 \mathrm{~m}\left(\mathrm{H}^{l}\right), 1.84 \mathrm{~d}\left(\mathrm{H}^{8 s}\right), 1.80 \mathrm{~m}\left(\mathrm{H}^{9 x}\right), 1.45 \mathrm{~d}\left(\mathrm{H}^{8 a}\right)$, $0.81 \mathrm{~d}\left(\mathrm{H}^{9 n}\right), 10.53 \mathrm{~s}, 8.82 \mathrm{t}(\mathrm{NH}), 8.01 \mathrm{~d}, 7.54 \mathrm{~d} . \mathrm{d}$, 7.44 d (H arom). Found, \%: N 9.81. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: N 9.79.

Epoxidation of benzoylureas (IIa, b). To a suspension of $0.40 \mathrm{~g}(0.0015 \mathrm{~mol})$ of benzoylurea, 0.04 g $(0.00075 \mathrm{~mol})$ of carbamide, and $0.31 \mathrm{~g}(0.29 \mathrm{ml}$. 0.003 mol) of 35% water solution of hydrogen peroxide in 10 ml of ethyl acetate was added at stirring $\left(20-25^{\circ} \mathrm{C}\right) 0.44 \mathrm{~g}(0.003 \mathrm{~mol})$ of phthalic anhydride, and the stirring was continued till the end of reaction (TLC monitoring). The reaction mixture was treated with a saturated solution of sodium hydrogen carbonate till alkaline reaction, the organic layer was separaated, dried with calcined magnesium sulfate, the solvent was removed, the reaction product was crystallized from aqueous 2-propanol.
exo-5-(Benzoylureidomethyl)-exo-2,3-epoxy-bicyclo[2.2.1]heptane (III), yield 96%, the characteristics are in agreement with described above.

4-(Benzoylcarbamoyl)-exo-2-hydroxy-4-aza-tricyclo[4.2.1.0 ${ }^{3,7}$]nonane (IV), yield 76%, the characteristics are in agreement with described above.

IR spectra were recorded on a spectrometer Specord 75IR from samples pelletized with $\mathrm{KBr} .{ }^{1} \mathrm{H}$ NMR spectra were registered on spectrometer Bruker DRX at operating frequency 500 MHz from solutions in deuterochloroform, internal reference TMS. The reaction progress was monitored and the purity of compounds synthesized was checked by TLC on Selicagel 60 F 254, eluent ether, development in iodine vapor. Elemental analysis was performed on Karlo Erba analyzer.

REFERENCES

1. Kas'yan, L.I., Usp. Khimii, 998, vol. 67, p. 299; Kas 'yan, L.I., Krasnovskaya, O.Yu., and Kas'yan, A.O., Zh. Org. Khim., 1996, vol. 32, p. 1106.
2. Kas'yan, A.O., Tarabara, I.N., Golodaeva, E.A., and Kas'yan, L.I., Zh. Org. Khim., 2001, vol. 37, p. 1729.
3. Mashkovskii, M.D., Lekarstvennye sredstva (Pharmaceuticals), Moscow: Novaya Volna, 2002, vol. 1, p. 540 p.; vol. 2, 608 p.
4. Krieger, H., Arzneimittelforschung, 1968, vol. 18, p. 487; Boehme, W.R., Siegmund, E.A., Scharpf, W.Y., and Schipper, E., J. Med. Pharm. Chem., 1962, vol. 5, p. 769.
5. Alder, K., Heimbach, K., and Reubke, R., Chem. Ber., 1958, vol. 91, p. 1516.
6. Kas'yan, A.O., Krasnovskaya, O.Yu., Okovityi, S.I., and Kas'yan, L.I., Zh. Org. Khim., 1995, vol. 31, p. 347.
7. Kasyan, L.I., Okovity, S.I., and Kasyan, A.O., Heteroatom Chem., 1997, vol. 8, p. 185.
